Statical calculation; linear elastic 2D Program posiada następujące możliwości: - Obciążenia węzłowe - siedem typów obciążeń belek: siły punktowe, obciążenia ciągłe stałe, obciążenia ciągłe trójkątne, BLOCK LOAD, obciążenie momentem, obciążenie ciągłe definiowane i obciążenie temperaturą. - możliwość składania z obciążeń podstawowych różnych kombinacji obciążeń - - belki mogą byc pryzmatyczne i niepryzmatyczne - możliwe jest liczenie betonów - Belki nogą być utwierdzone, przegubowo podparte i podparte sprężyście. - Nieskończenie sztywne połoączenia ekscentryczne. - węzły mogą ulegać przepisanym przemieszczeniom (dla różnych typów podparć). - dla belek pryzmatycznych należy podawać wskaźnik przekroju na zginanie dla belek niepryzmatycznych program wylicza wskaźnik samodzielnie Program weryfikuje również jednostki. - Mozna wymusić obliczenia wskaźnika ścinania - możliwe są mocowania podatne (sprężyste) - program wspiera przeguby plastyczne (dość zaawansowana opcja) - wspomaga sprawdzanie konstrukcji w zgodzie z Eurokodem 3 ; także sprawdzenie wyboczenia może zostać przeprowadzone; - sprawdza naprężenia zgodnie z Eurokodem 5 (drewno) - program umożliwia optymalizację przekroju prętów For non prismatic beams all options are supported as with prismatic beams (all types of beam loads, eccentrically connections; spring connected beams, hinges etc.). The stiffness matrix of a non prismatic beam is determined according exact analytical solutions. The point load and the point moment as beam loads are also processed exactly following analytical formulas; at non prismatic beams the other types of beam loads are calculated by way of numerical integration (100 integration points per load type). For prismatic beam loads, with the exception of the arbitrary distributed beam load, all types of loads are processed at an exact analytical way. Weryfikacja danych wejściowych Dane problemu mogą być, oprócz weryfikowania w postaci list, również weryfikowane w postaci danych graficznych. w oknie graficznym programu. W tym wypadku geometria modelu, obciążenia belek i obciążenia węzłowe są do analizowania w oknie graficznym. Output of the calculation results (numerical and graphical) The output is at first given in a numerical form; it concerns the deformations and beam forces near the nodes. By way of post processing the distribution of the forces along the beam axes can be output. Next to the numerical output the calculation data can also be shown at a graphical way: force distribution per base loadcase and load combination at the whole framework, separated per beam or per combination beam. Also by clicking at the tabs the calculated stresses can be shown. Further from the output data envelopes (maximum and minimum values) of a number of BASE loads or load COMBINATIONS can be calculated and pictured. The deformations of the framework can be plot as nodal displacements. Statical calculation; GEOMETRIC non-linear 2D
For a geometrical non-linear calculation the second order terms of deformations are accounted for; this results in a different force distribution in the framework compared to linear calculation. Because of the nature of a non-linear calculation the superposition principle does not longer holds. As a consequence it no longer possible to compose load combinations from base loadcases. Calculation of Eigenfrequencies 2D With the aid of this option the natural frequencies and the accessory shapes of vibration (the Eigenvectors) of a framework with fixed beam connections can be calculated. All shapes of vibration can be thought to consist out of a weighed summation of all Eigenvectors (Fourier analysis). Acts a load on the framework at a frequency approximately equal to a certain Eigenfrequency then the appearing deformations are becoming very large (and also the stresses). The lowest Eigenfrequency is most critical. Often it will be attempted to keep the load frequency underneath the lowest Eigenfrequencies; therefore mostly only the lowest Eigenfrequencies (the first Eigenmodes) are of importance. The frequencies of the maximum of traffic loads at a road bridge lies at about 10 Hz; the frequency of wind loads on buildings lies at about 0.1 Hz. Even if there is no danger of strong resonance of the structure the dynamic effect can cause a significant increase of the deformations and accordingly larger stresses. The program does not account for material damping; with the majority of building materials this effect can be ignored. The vibration shapes with the lower Eigenfrequencies are calculates at the largest accuracy The vibration shapes are calculated in relation to the degrees of freedom at the supplied nodes. In the case for the need of more detailed information between the nodes, the beams can be divided in parts with the aid of dummy nodes which should be input extra. The calculated Eigenvectors are normalized at a maximum value of "1". The real value is thus the provided value multiplied with a unknown constant; only the shape of the vibration is calculated. Next to the beam properties in the nodes extra point masses can be input (mass and moment of inertion). Calculation of influence lines 2D With the aid of this option from every framework the influence lines can be calculated of normal forces, shear forces and moments. Next to a single point load also influence lines of point load systems can be output. Except of numerical output (also stresses) a graphical reproduction is possible. Statical calculation; linear elastic 3D The program supports the following calculation capabilities: - nodal loads. - distributed beam loads. - continuous spring supported beams. - various BASE loads from where load COMBINATIONS can be composed. - the beams can be FIXED or HINGED connected to the nodes. - infinite stiff ECCENTRICAL beam connections are possible. - the nodes can undergo prescribed displacements (including different types of supports). - next to elastic stress checks these checks can be performed according Eurocode 3 (steel) and Eurocode 5 (timber) too; buckling checks can be performed also. - further reinforcement can be calculated according Eurocode 2 (concrete) - the program is capable to adjust the beam sections to be close to an unity factor of one (optimizing option with the aid of a design list). - calculation of Eigenfrequencies. Check input data The input data for a problem can, next to a numerical input, also be shown and entered in a graphical window: for the case of the GEOMETRY, the BEAM loads and the NODAL loads acting on the framework. It shown through a built in spatial camera model (fully 3- dimensional) Output of the calculation results (numerical and graphical) The output is at first given in a numerical form; it concerns the deformations and beam forces near the nodes. By way of post processing the distribution of the forces along the beam axes can be output. Next to the numerical output the calculation data can also be shown at a graphical way: force distribution per base load case and load combination at the whole framework, separated per beam or per combination beam. Further from the output data envelopes (maximum and minimum values) of a number of BASE loads or load COMBINATIONS can be calculated and pictured. The deformations of the framework can be plot as nodal displacements.
Calculation of Eigenfrequencies 3D The 3D capabilities are equal to the 2D capabilities for the calculation of Eigenfrequencies. The calculation or Eigenfrequencies is part of the supported earthquake multi modal response analysis (according to EN 1998-1); see further Earthquake load 3D. |